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1. Introduction 
 

The digital design described herein is a generalization of the Digital Dual Mixer Time Difference 
used in CERN’s White Rabbit system and described in [1]. The goal here is to overcome the DDMTD 
glitch filter design problem by suppressing it (no glitch generation), while keeping low FPGA resources 
in a quite straightforward implementation. 
 

The original (analog) DMTD [2] uses the differential phase conservation property of two clock 
signals of same frequency 0f  after mixing with a third one of frequency CPf . Letting 0CP beatf f f  , 

two signals at beat frequency beatf  are produced after mixing and low pass filtering. By choosing beatf  
low, the phase difference between the beat signals can be measured with high precision by a 
conventional counter. As such, DMTD is a method to measure precisely the phase between two high 
frequency signals. 
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DMTD principle 

 
Since mixers and low pass filters are analog devices, DMTD is difficult to integrate in small designs, 

especially if numerous measurement channels are required. So, there is a need for a digital counterpart 
easily fittable into FPGAs. 
 

The Digital DMTD (DDMTD) method presented in [1] uses a helper clock of frequency 

0 1CP
Nf f

N



 to sample the input clock signals. It produces two beat signals at frequency CPf

N
, and 

the phase is reflected by the reading m  of a counter started with one signal and stopped with the 
second.  
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DDMTD principle 

 
Without jitter, the measure uncertainty is 1 . Letting the normalized phase in 0..1 instead of 0..2 , 

the normalized phase measure is then m N  and the normalized phase uncertainty is 1 N . 

The operation can also be seen like a slow scan of the input signals, with a 0T N  period increment 

( 0 01T f ).  
 

 
DDMTD : signals example for N=8 

 
 
A problem arises when the scan reaches a rising or falling edge : with high N  and/or high jitter on 

signals, the sampling generates random 0s and 1s (glitches) until the edge is scanned. This leads to a 
fuzzy edge position, and some filtering method is required to estimate the « real » position of the edge. 
The DDMTD paper [1] discusses several « deglitcher » algorithms. 

 

 
DDMTD : jitter effect example for high N (here N=32) 

 
 
 
2. The ADMTD  
 

One can avoid glitches with a sampling step greater than the signals jitter zone width. This can be 

achieved simply by using a helper frequency 0CP
Nf f

N P



, with P N , and P , N  relatively 

prime. The sampling period is then 0 0
1 1CP
CP

N P PT T T
f N N

      
 

.  
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ADMTD : principle 

 

The beat frequency is 0 0 01beat CP
N Pf f f f f

N P N P
        

.  

Again, the sampling can be seen as a slow scan of the input signals, with a 0TP
N

 period increment. 

As P  and N  relatively prime, the input signals are still scanned through N  differents points, but after 

P  subscans. So the measure resolution is the same than for DDMTD (ie 0T
N

), but there is no two 

successive points in the dark edge zone, avoiding glitch production, when P N  is large enough. 
 
By processing the DDMTD example (N=32) with P=5, the glitches disappear : 
 

 
ADMTD : example of glitch avoidance on the beat signal 

 
Without jitter, each basic measure between signals edges gives a gross value im  in  0.. beat CPT T , 

ie a count value in   0..ceil N P . The normalized count (in  0..N 1 ) associated with this 

measure is :  mod modN i CP
i i

beat

mTm N N m P N
T

 
  
 

. The choice 2nN   eases the 

implementation of the modulus in a FPGA. Since there now a multiply operation, this method is called 
here ADMTD (Arithmetic DMTD). 
 

Now, we can average M  successive basic measures to get the final differential phase value. M  
must be multiple of P  to insure a uniform scan coverage. 
The differential normalized phase can be written  N

N iaverage m  . The average computation is 

done as : 
0 0

0 0

0 0

0 0

1 11 1 1N N Ni M i M
i i i N N N

N i i i
i i i i

m m m
m m m

N M N N M


   

 

 
     

 
  , with 

0

N
im  is a 

centering value derived from the first basic measure (basic phase measures are supposed not noisy 
enough to cover more than one quadrant). 
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The period of the beat signal is : 
1 mod

beat CP CP CP
beat

N N N PT T floor T T
f P P P

     
 

. Without jitter, 

the edge position errors are 
  

0

mod mod
modp CP CP

p N P P
e e T T

P
 

  
  

, 0.. 1p P  , where 

 0 CP0..Te   is first edge position (same as the DDMTD single-edge start position error).  
The errors on the P  basic measures (between the edges of the two beat signals) are : 

     
0 1

mod mod mod mod
mod modp CP CP CP CP

p N P P p N P P
e T T e T T

P P


   
      
      

 

where  1 CP0..Te   is the first (stop) edge error of the second signal. 
 

Since P  and N  are relatively prime, so are modN P  and P . There are also P  successive errors 
values (the sampled sequence of the beat signals repeats every P  cycles). One can list the P  
different errors :  

0 1mod mod , 0.. 1k CP CP CP CP
k ke T T e T T k P
P P

                 
 

 
The averaging of the P  basic measures produce a global measure error : 

1 1
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1 1 mod mod
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P P P P
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   

 

With 0
0 0 CP

ke T
P

  , 00 k P  , 0 0.. CPT
P

    
 

 and 1
1 1 CP

ke T
P

  , 10 k P  ,  1 0.. CPT
P

    
, we get : 
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And eventually: 0 1     

The error on the averaged measure is then 0 1   in ..CP CPT T
P P

   
, leading to a normalized 

mesure error (after multiplication by P ) in  1..1 , or a normalized phase error in 
1 1..
N N

   
. This 

error is the same than for DDMTD. 
So, with some primality conditions, the ADMTD produces the same results than DDMTD when no 

jitter. The improvement relies on the glitch-free running through jitter zone hopping. Moreover, the 
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averaging operates on the jitter too, with no non-linear processing. This leads to better convergence (or 
at least more predictable) to « real » phase value when averaging numerous measures.  
 
 
3. Special cases, limits and implementation tricks 
 

With 1P  , back to the DDMTD… 
The maximum value of P  is limited in the above description by the basic measures averaging, 

which needs a centering value and not too dispersed basic measures values. In a typical 
implementation, the beat period should be such that it always covers at last 4 successive sampling 

points, ie 4beat

CP

T
T

 , or 4P N .  

The minimum acquisition time MT  to insure M  basic measures is : 

     01 1 1M beat CP
N P NT M T M T M T

P P


       

 
The ADMTD requires one multiply by P  (modulus N ) of the basic counter measures. The 

implementation is easier by choosing 2 1pP    and 2nN   (which are obviously relatively prime). 
The multiplier can then be reduced to one shift and one add (or sub) over n  bits.  

The final divide by M  of the accumulated basic measures (one or less every  1 CP
NM T
P

  period) 

can be done through software or direct implementation. The particular case 2mM P  with 2 1pP    
can be very efficient, by noting :  

 3 41 2 1 22 2 1 2 2 2 ...
2 1 2 2 1

m p
m m p p p p

p p pM

 
      

          
 

or  3 41 2 1 22 2 1 2 2 2 ...
2 1 2 2 1

m p
m m p p p p

p p pM

 
      

          
 

 
With 7p  , for exemple, a 32-bit precision can be achieved with 3 additions. 
 
 
Summarizing, for a typical implementation of ADMTD in FPGA (no multiplier): 

Let 2nN  . 

Let 2 1pP    with 2p n  , and 0
PT
N

 greater than the peak-to-peak jitter ( CPf  clock + input 

signal). 
Let 2mM P . 
 
Use 0m   for further jitter averaging (same result than for 0m   if no jitter) 

 
 
4. The K-ADMTD variant 

An oversampling variant can be trivially derived, by using a sampling frequency 0CP
KNf f

N P



, 

with N P  and K  relatively prime. This method is called here K-ADMTD. It uses K  ADMTD 
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subdesigns in parallel working at 'CP CPf f K  frequency, each provided every K  CPf  cycles with a 

CPf -sampled bit.  
In others words, the K  ADMTD subdesigns operate with a helper frequency 'CP CPf f K  and input 

signals shifted with a step 01 1CP
CP

T PT
f K N

    
 

. The final mesures of the K  ADMTD subdesigns are 

averaged to provide the final result. Relative to one of the ADMTD subdesigns, both the resolution and 
the error are improved by a factor K .  
The K-ADMTD is mainly useful for high CPf  values (more than a few 100 MHz), allowing parallelization 
of slower logic ADMTD blocks through a deserializer. 
 

 
Summarizing, for a typical implementation of K-ADMTD in FPGA (no multiplier): 

Let 2nN  . 

Let 2 1pP    with 2p n  , and 0
PT

KN
 greater than the peak-to-peak jitter  ( CPf  clock + input 

signal). 
Insure N P  and K  relatively prime. 
 
Let 2mM P . 
Use 0m   for further jitter averaging (same result than for 0m   if no jitter) 

 
 

In a twin-track approach, the ADMTD can also be used in subsampling mode ( 0CPf f K ). We have 

then 0 0CP
N P KPT KT T K

N N
     

 
, the phase resolution is kept if K  and N are relatively prime, and 

the jitter condition becomes : 0
KPT
N

 greater than the peak-to-peak jitter  ( CPf  clock + input signal). 

 
 
References : 
 
[1] P.Moreira and I.Darwazeh, "Digital Femtosecond Time Difference Circuit for CERN's Timing 
System", University College London 
 
[2] D.W. Allan and H. Daams, « Picosecond time difference measurement system », 29th Annual 
Symposium on Frequency Control. 1975, pp 404 – 411 
 
 
Legal stuff : 
 
FEE White Papers are for information only. Ideas described can be valuable or not.  
Errors are not intentional. 
Systems described may or may not have been already used in real life. 
This document belongs to FEE, but can be shared. 
Partial copy of this document is not permitted.  
 
May contain traces of french language. 
 
Corrections and technical comments are welcome. 


