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1. Principle 
 

The principle of a standard digital oscillator (or NCO for Numerically-Controlled Oscillator) of frequency 0f   

with a sampling frequency ef  is described below, in the complex case : 

 
 
It is based on a modulus-Q  accumulator, incremented at each cycle by a value A . The accumulator works 

in most cases in base 2 : it stores a N -bit number representing the current oscillator phase such that 2NQ   

represents 2 . The phase increment can be constant (constant frequency), or follow a specific curve, which 

enables frequency jumps or sweeps. The current value of accumulator A  is used to compute  cos 2
A

Q


 
 
 

 and 

sin 2
A

Q


 
 
 

, which are the ouputs of the complex NCO. This computing can be done : 

- through a pre-computed table (LUT, Look-Up Table),  
- through direct calculus (use of CORDIC algorithms in FPGAs, ASICs,…) 
- through combination of these methods  
 
The NCO is essentially defined by the accumulator binary width (frequency resolution) and the output binary 

width (amplitude resolution).  
In the optics of an implementation in digital hardware (FPGA,…), the « best » implementation method 

depends on accumulator binary width, output word resolution and generation rate. For low-width accumulator (say 
up to 10..12 bits), the LUT method should be preferred, especially if the output resolution is high.  

One can also define the NCO’s SFDR as the carrier / highest spur ratio (dBc). The SFDR is limited mainly by 
the output binary width, a bit by sine/cosine computing noise. It can be enhanced through dithering techniques 
which add a small white phase noise at the accumulator output in order to spread out the spurs (more spurs, but 
each of lesser power).  

 
 

2. Extension to other bases than 2 
 

Beside the 2NQ   case, one can imagine a NCO with NQ b , b  integer. Supposing we use LUT tables, the 

table size can be prohibitive when N  is high. A solution is to use a dual-stage computing method, by writing the 

accumulator value as 1 0
MA Ab A  , avec 0 0... 1MA b   and 1 0... 1N MA b    with 1... 1M N  . The two 

numbers 0A  and 1A  can then index two tables 0M  and 1M , defined by  
2

0

k
j
QM k e


  with 0... 1Mk b  , 
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and  
2

1

Mb
jk

QM k e


  with 0... 1N Mk b   . By doing the (complex) product of such indexed sub-tables 

outputs, we get    
0 1 0

12 2 2 2

0 0 1 1

MM A Ab Ab A
jA j j j

Q Q Q QM A M A e e e e
   



    , which is the desired value. At the 

expanse of a complex multiply, the required memory has been reduced from NQ b  elements to N M Mb b  . In 

practice, the NCO accumulator is made of two registers 0A  and 1A , and the phase increment has to be 

precomputed modulus Mb  for 0A , modulus N Mb 
 for 1A , and the carry must be handled from 0A  to 1A .  

If necessary, we can iterate the decomposition until having N  tables of b  elements, with 1N   complex 
multiplies added. 

Of course, if b  is even, the tables size can be reduced by 2 through  -symmetry (sign inversion to manage). 

Same if b  is a multiple of 4, through 
2


 rotation (sign inversion + real-imaginary swap to manage). 

The modulus b  ( 2b  ) arithmetic may be not as easy in the general case and can limit the NCO’s data rate.  
 
 
 
3. Extension to the product of two relatively prime integers  
 
If Q  is not prime or a power of a prime integer, we can write Q UV , with U  et V  relatively prime. A 

modulus-Q  NCO can then be implemented with two NCOs working modulus-U  and modulus-V . These 

elementary NCOs allow the generation of frequencies e
u

f
f u

U
 , 0... 1u U  , and e

v

f
f v

V
 , 0... 1v V  . 

The (complex) product of these NCOs outputs allows the generation of the frequencies ,
e e

u v

f f
f u v

U V
  , 

which can rewritten as    ,
e e

u v e

f fu v
f f u V v U u V v U

U V UV Q
           
 

. 

Since U  and V  are relatively prime, there are p  and q  such that 1p V q U     (Bézout‘s theorem).  

 

p  and q  can be obtained for example through the extended Euclid’s algorithm    , , ,ep q r PGCD U V , 

which is : 
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 
 




 and as long as ' 0ir   : 
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' '
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
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 

 

 

 
 
 



   
  
  

 

At end of execution, we can take : ip p , iq q  and ir r . We have then :  ,pV qU r PGCD U V   , 

ie 1pV qU r    if U  and V  relatively prime. 

In practice, one can take ip U p   (resp. iq V q  ) if ip  (resp. iq ) is negative, to avoid handling 

negative number in the NCOs.  
 

The frequency c e

P
f f

Q
  with 0... 1P Q   can then be generated by choosing : 

 modu P p U   and  modv P q V 
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4. General case 
 

In the general case, the implementation of a NCO generating the exact frequencies e

P
f

Q
, P  and Q  positive 

integers with P Q , can be done with the procedure below : 

- decomposition of Q  in prime factors  :  

1

M
R m
m

m

Q Q


 , where the mQ  are M  distinct prime integers. 

- implementation  of a bunch of M  elementary NCOs working modulus 
 R m

mQ .  

- Computation of the phase increments mu  for each of the elementary NCOs, through 1M   applications 

of the extended Euclid’s algorithm, with for example : 
 

0v P  et  

 

 

   
 
 

1

1

, , ,

mod

mod

R m
m m

M
R k

m k
k m

m m

m m m e m m

m m m m

m m m m

U Q

V Q

P v

p q r PGCD U V

u P p U

v P q V

 



 

 
 
 

 





 with 1.. 1m M  , then 1M Mu v  . 

 

This implementation principle is limited by the maximum size of the elementary tables, which is  max m
m

Q , ie 

the greatest prime factor of Q . Moreover, if an elementary NCO is itself implemented as a group of NCOs of 

same prime factor, an additional step is needed to compute the phase increment of each of these « sub-NCO ». 
The computing of a single output sample from the global NCO can take a non-negligeable number of 

operations. In case of a FPGA implementation, these operations can be pipelined, and the output data rate can 
be kept high.  

 
 
5. Extension to the product of M numbers 
 
By enabling the propagation of carries between the accumulators of several NCOs, and using tables of 

fractions of turn, one can build a global NCO of size equal to the product of the sizes of the basic NCOs. The 
carries propagation constraint can lead to a reduction of the working frequency in an FPGA. 

The generation of a signal at frequency e

P
f

Q
, with 

1

M

m
m

Q Q


 , P  et Q  positive integers, and P Q , can 

be done through the following procedure : 
 
Let NCO of index 0 the least significant one, the NCO of index 1M   is the most significant. 
The values tables of the basic NCOs are defined by : 

 
1

2
M

l
l m

k
j

Q

mT k e

 




  with 0 mk Q  . 

Except for the most significant NCO, the NCO m  table contains mQ  values for the angles 0 to the minimal 

phase increment of NCO 1m , ie 1

1

2
M

l
l m

Q




 


. 
 

Let  ma n  the current value of accumulator of the index m  NCO; we have :  0 m ma n Q  . 
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Let  md n  the phase increment of the index m  NCO; we have :  0 m md n Q  . 

For sample n, the output of the global NCO is the product of the basic NCOs outputs : 

    

   
   

   

1 1

01 1 1
1 0

01 1 1
0 1 0

0

2 2 2

1 1 2

0 0

M m

m lM M m
m lm m

m lM M M
m m l

l l l
l m l m l

a n a n Q
a n a n

j j j a n a n Q

M M Q Q Q j
Q

m m
m m

y n T a n e e e e

  



 

  
 

  
  

  

 
  

      
   

 

 
  

  
       

For sample n, the phase increment of the global NCO is : 

     
1 1

0
1 0

M m

m l
m l

d n d n d n Q
 

 

 
    

  , with  0 d n Q  . 

The accumulators values for sample n+1 are :    1 ' 1 modm m ma n a n Q   , with : 

     0 0 0' 1a n a n d n    

        1 1 1 0 0' 1 ' 1a n a n d n a n Q       

… 

        1 1 1 2 2' 1 ' 1M M M M Ma n a n d n a n Q           

with  v  =1 if v is true, 0 otherwise (carry). 

 
 

 
 
6. Case of the frequency ramp 
 
We want here to generate a frequency ramp (the frequency varying linearly with time) through a NCO with a 

modulus-Q  accumulator. This is done by modifying the phase increment at each sample. 

The value of NCO’s accumator A  and its increment are : 

     
    2

1 mod

1

       

     

A n A n A n Q

A n A n A
 

 

 A n  is the current phase increment 

2 A  is the frequency increment (supposed constant for a linear frequency ramp) 
 
One can write : 
 

      21 0 mod       A n A n A n A Q  

 0A  is the initial phase increment (starting frequency) 

 
or : 

        21
0 0 mod

2

 
     
 

n n
A n A n A A Q  

 0A  is the initial phase 

 0A  is the initial phase increment (starting frequency) 

 

For a N -samples ramp, the frequency amplitude is   21 N A  (difference between endind and starting 

frequencies). 
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With a sampling frequency ef , an initial phase 0 , a starting frequency 0f , an ending frequency 1f , a ramp 

duration rT , we have : 

  00
2




   
 

A round Q  

  00
 

   
 e

f
A round Q

f
 

  e rN round f T  

 
2 1 0

1

 
    e

f f
A round Q

N f
 

 
 
Adding the constraint of phase continuity between the start and end of the ramp (to get a nicer signal in case 

of a periodic ramp, where the initial values are reloaded each N  samples), we have :    0A N A , 

 

ie         21
0 0 0 mod

2

 
     
 

N N
A A N A A Q  

or     21
0 mod 0

2

 
    

 

N N
N A A Q  

 
A particular sufficient condition is : 

Q is multiple of  1N N  

and   0A  is multiple of 
Q

N
  

and  
2 A  is multiple of 

 
2

1
Q

N N
 

 
which can also be written as : 

 1 Q KN N  

and 0f  multiple of ef

N
 

and ( 1f - 0f ) multiple of 2 ef

N
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